Characterizing the IRC-based Botnet Phenomenon
نویسندگان
چکیده
Botnets, networks of compromised machines that can be remotely controlled by an attacker, are one of the most common attack platforms nowadays. They can, for example, be used to launch distributed denial-of-service (DDoS) attacks, steal sensitive information, or send spam emails. A longterm measurement study of botnet activities is useful as a basis for further research on global botnet mitigation and disruption techniques. We have built a distributed and fully-automated botnet measurement system which allows us to collect data on the botnet activity we observe in China. Based on the analysis of tracking records of 3,290 IRC-based botnets during a period of almost twelve months, this paper presents several novel results of botnet activities which can only be measured via long-term measurements. These include. amongst others, botnet lifetime, botnet discovery trends and distributions, command and control channel distributions, botnet size and end-host distributions. Furthermore, our measurements confirm and extend several previous results from this area. Our results show that the botnet problem is of global scale, with a scattered distribution of the control infrastructure and also a scattered distribution of the victims. Furthermore, the control infrastructure itself is rather flexible, with an average lifetime of a Command & Control server of about 54 days. These results can also leverage research in the area of botnet detection, mitigation, and disruption: only by understanding the problem in detail, we can develop efficient counter measures.
منابع مشابه
Multi-phase IRC Botnet and Botnet Behavior Detection Model
Botnets are considered one of the most dangerous and serious security threats facing the networks and the Internet. Comparing with the other security threats, botnet members have the ability to be directed and controlled via C&C messages from the botmaster over common protocols such as IRC and HTTP, or even over covert and unknown applications. As for IRC botnets, general security instances lik...
متن کاملAn Algorithm for Anomaly-based Botnet Detection
We present an anomaly-based algorithm for detecting IRC-based botnet meshes. The algorithm combines an IRC mesh detection component with a TCP scan detection heuristic called the TCP work weight. The IRC component produces two tuples, one for determining the IRC mesh based on IP channel names, and a sub-tuple which collects statistics (including the TCP work weight) on individual IRC hosts in c...
متن کاملAdaptability of IRC Botnet Detection Method to P2P Botnet Detection
This report mainly discusses the adaptability of the IRC-based Bot detection method to be used in the P2P-based Bot detection. The first section introduces the IRC-based bot and the newly appeared P2P-based bot to see their difference. The second section shows the related work and the traditional method of BOTNET detection. The third section discusses the methodology used by the IRC based Botne...
متن کاملBotOnus: an online unsupervised method for Botnet detection
Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...
متن کاملUsing Machine Learning Techniques to Identify Botnet Traffic
To date, techniques to counter cyber-attacks have predominantly been reactive; they focus on monitoring network traffic, detecting anomalies and cyber-attack traffic patterns, and, a posteriori, combating the cyber-attacks and mitigating their effects. Contrary to such approaches, we advocate proactively detecting and identifying botnets prior to their being used as part of a cyber-attack [12]....
متن کامل